AI算力設(shè)備
AI視覺目標(biāo)檢測一體機數(shù)據(jù)服務(wù)
數(shù)據(jù)技術(shù)服務(wù) 數(shù)據(jù)咨詢服務(wù) 數(shù)據(jù)方案服務(wù) 數(shù)據(jù)報告服務(wù)數(shù)字孿生
全行業(yè)一體化解決方案基于先進的AI邊緣計算技術(shù),巧妙融合了目標(biāo)檢測類的AI機器視覺檢測模型,并經(jīng)過精心設(shè)計適配的外殼而成。

在 Python 中實現(xiàn)中文情感分析,常用的庫有:jieba、SnowNLP 和 Pyltp。
下面是一個 jieba 的案例:
1import jieba
2import jieba.analyse
3text = "這個蘋果非常好吃!"
4words = jieba.cut(text)
5print(" ".join(words))
下面是一個 SnowNLP 的案例:
1import snownlp
2text = "這個蘋果非常好吃!"
3sentiment = snownlp.SnowNLP(text).sentiments
4print(sentiment)
下面/是一個 Pyltp 的案例:
1from pyltp import SentimentAnalysis
2text = "這個蘋果非常好吃!"
3sentiment = SentimentAnalysis.classify(text)
4print(sentiment)
做英文情感分析可以使用以下幾個常用的 Python 庫:
1import nltk
2from nltk.sentiment import SentimentIntensityAnalyzer
3sentiment_analyzer = SentimentIntensityAnalyzer()
4sentiment = sentiment_analyzer.polarity_scores("This apple is really poor quality.")
5print(sentiment)
1from textblob import TextBlob
2text = "This apple is really poor quality."
3blob = TextBlob(text)
4sentiment = blob.sentiment.polarity
5print(sentiment)
1from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
2sentiment_analyzer = SentimentIntensityAnalyzer()
3sentiment = sentiment_analyzer.polarity_scores("This apple is really poor quality.")
4print(sentiment)